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ABSTRACT

This paper presents an efficient and robust method
for registration of terrain models created using stereo
vision on a planetary rover. Our approach projects two
surface models into a virtual depth map, rendering the
models as they would be seen from a single range sensor.
Correspondence is established based on which points
project to the same location in the virtual range sensor.
A robust norm of the deviations in observed depth is used
as the objective function, and the algorithm searches for
the rigid transformation which minimizes the norm. An
initial coarse search is done using rover pose information
from odometry and orientation sensing. A fine search is
done using Levenberg-Marquardt. Our method enables a
planetary rover to keep track of designated science targets
as it moves, and to hand off targets from one set of stereo
cameras to another. These capabilities are essential for the
rover to autonomously approach a science target and place
an instrument in contact in a single command cycle.

I. INTRODUCTION

Single cycle instrument placement (SCIP) is the single
greatest autonomy need for the next generation of Mars
rovers, such as the planned 2009 MSL rover mission to
Mars1. The goal of SCIP is to enable a planetary rover
to approach and place an instrument on a scientifically
interesting point on the terrain from a distance of 10
meters[1], [2]. This must happen within one command
cycle, so that after an operator selects a science target
and uploads a command, the next response from the
rover is the requested science measurement from the
target. Single cycle instrument placement will significantly
increase science return per unit of operational time over
the stop and move, human-in-the-loop operation of the
Sojourner and MER rovers, which each require between
3 and 5 command cycles to obtain the same data.

The first step in SCIP is the navigation of the rover
to a location that places the point of interest within the
workspace of an arm which carries an instrument. Un-
certainty about the exact target position and accumulated
rover localization errors require that the rover actively
keep track of where the target is in relation to itself as
navigates towards it. Once positioned, the rover evaluates

Fig. 1. Artist’s conception of 2009 Mars Smart Lander [JPL]

the target to ensure the instrument can be safely placed
and then moves it into place with the arm. This can require
handing the target off from the cameras used to track it
in the approach phase to the cameras used for close up
inspection and positioning of the arm.

Terrain model registration can solve both the target
tracking and target hand-off problems. Tracking is done
by registering successively acquired terrain models of the
target area to the initially acquired model of the target.
Tracking also provides information about rover motion
between views. Hand-off is done by registering the target
models from two different sensors.

This paper focuses on the problem of terrain model reg-
istration. The method presented in this paper uses stereo
vision to build 3D terrain models, then uses an algorithm
similar to ICP to find the rigid transformation which
aligns two models. An important difference between the
method presented here and ICP is the use of a sensor
model which projects the two views into a virtual range
sensor. Using a rendering model removes the need to
search for corresponding points with a distance heuristic.
A robust error metric is then minimized, reducing the
effect of outliers in the stereo models. A coarse search
for the minimum is performed using a correlation based
strategy which uses partial knowledge of rover motion. A
fine search is performed using a general purpose robust
estimation algorithm.
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II. PREVIOUS WORK

The Iterated Closest Point (ICP) algorithm was intro-
duced by Chen and Medioni[3] and Besl and McKay[4] to
recover a rigid transformation between two point clouds
with unknown correspondence. The method relies on two
steps. The first uses a nearest neighbor heuristic to estab-
lish correspondence between points. The second computes
the rigid transformation between the point clouds. When
only two point clouds are being aligned, the second step
is computed in closed form.

A good summary of ICP and its extensions can be found
in a recent survey[5]. An important extension to ICP is
an objective function which uses the distance between a
vertex in one model and the nearest point on the surface
of the other model, rather than the nearest vertex[6].
This objective function does not penalize for motion of
corresponding points along the surface.

Methods other than ICP have also been used
for model registration, including the Expectation-
Maximization algorithm[7], and nonlinear optimization
with robust M-estimators[8]. The latter approach is at-
tractive for several reasons. Fitzgibbon showed that be-
sides increasing the robustness of the solution to outliers
in the data, using Levenberg-Marquardt to minimize a
robust norm converges to a solution rapidly and has a
significantly larger basin of attraction than least squares.
For these reasons, robust estimation with Levenberg-
Marquardt is used in this work.

III. APPROACH

This section describes the technical approach used for
terrain model registration. The approach relies on three
key parts. The first is a sensor model which predicts the
observations that should be seen under a hypothesized
transformation for the surface models. The sensor model
used here is a virtual range sensor, which is a reasonable
approximation to the stereo system used to measure the
shape of the terrain. The sensor model allows us to write
an objective function which depends on the difference
between what is observed and what is expected under the
hypothesis.

The second part is a coarse search based on approx-
imate knowledge of position and orientation. Assuming
a fixed orientation, the virtual range sensor axes specify
a coordinate frame over which a 2D correlation search
can be performed. The coarse search finds an approximate
translation which is closer to the alignment than the initial
guess based on odometry.

The third part is a fine search based on Levenberg-
Marquardt (LM) nonlinear optimization[9], along with
an extension which incorporates robust estimation using
iteratively reweighted least squares (IRLS)[10], [11]. The
robust optimization method is used to minimize the ob-
jective function and recover the alignment of the terrain
models.
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Fig. 2. Each pixel in the range image is predicted by rendering the
corresponding mesh facet into a virtual range sensor.

A. Sensor model

Stereo processing results in a range image consisting
of a depth estimate for every pixel in the rover stereo
cameras. These depth estimates are combined to produce
a 3D model of the surface. If two models of a surface
are made from different locations, the rigid transformation
that aligns the two models can be used to determine the
coordinate transformation between views.

The surface models are represented by triangulated
meshes with vertices v and v′. If the two 3D models
contain some region of overlap, there is a rigid trans-
formation that aligns the overlapping regions. The goal
of registration is to find the rigid transformation that
aligns the model v with the model v′. We represent the
transformation using the parameter p = (x, y, z, α, β, γ)T

corresponding to 3 translational and 3 rotational degrees
of freedom. There are many ways to represent rotations;
we choose Euler angles for simplicity. Singularities in
the representation are not an issue since roll and pitch
angles for our rover are naturally constrained to be within
tolerable physical limits.

These parameter p defines a 4×4 transformation matrix
Tp. If p is the parameter describing the transformation
between surfaces v and v′, then for every pair of corre-
sponding points vi and v′i the relationship

v′i = Tpvi (1)

holds. With real observations this equality will not hold
exactly. The approach taken in ICP is to minimize the
Euclidean distance between the corresponding points.

In this work, we project these two models into a virtual
range sensor view and minimize the difference between
the rendered depths at each point. The projection is done
using a rendering operation which uses the hypothesized
pose of a model in the camera coordinates to find the
intersection of the surface of the terrain model and the rays
corresponding to each pixel of the virtual range sensor.
The range is then computed as the distance between the
camera center and the intersection of the model surface
and camera ray.

The rendering takes O(n) operations, where n is the
number of pixels in the virtual range sensor. For each
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triangle on the mesh v′, the vertices v′i, v′j , and v′k are
projected onto the image plane. For every pixel inside that
triangle, the location of the intersection of the camera ray
n̂c and the facet of the mesh is a point s′i, given by

s′i = aiv
′

i + ajv
′

j + akv
′

k (2)

with ai +aj +ak = 1. The depth to the intersection point
is the length of the projection of the intersection point
onto the camera ray,

zi = n̂c · s
′

i (3)

The vector of all depths zi is denoted z. We fix the
registration to use the coordinate frame of the surface
model v′ so that it does not move during registration. This
means that z is a constant and can be computed once at
the beginning of a registration.

The depth to the point vi changes with p. Similarly to
(2) and (3), we write

si = Tp(aivi + ajvj + akvk) (4)

and
hi(p) = n̂c · si (5)

The function h(p) is a vector containing all predicted
depths. We define an objective function which is the sum
of squared deviations between the projected depths

J2 =
1

2
(z− h(p))T R−1(z− h(p)) (6)

where R is the measurement covariance. The use of
a rendering model eliminates the need to search for
corresponding points. Correspondence between points is
established directly by the rendering operation since uncer
the current pose hypothesis, corresponding mesh points
project to corresponding range image pixels.

B. Coarse registration

We can expect our rover to have approximate knowl-
edge of translation and rotation between observations.
Dead reckoning can provide rudimentary information
about both translation and rotation. On relatively short tra-
verses, errors in dead reckoning based purely on odometry
on the K9 rover are on the order of 10 cm of translation
and a few degrees of rotation in yaw per meter travelled.
Our rover also has sensors which measure orientation
directly, including an inclinometer and a sun tracker
which together fully constrain the rover orientation. These
sensors are accurate to within a few degrees regardless of
distance travelled.

Visual tracking methods often make use of brute-force
correlation to find the 2D image plane location of a feature
of interest. Searching for a 6dof rigid transformation
using correlation is prohibitive, since evaluating every
hypothesis on a 6D grid is expensive. However, if the
orientation is approximately known, then 3 of the degrees
of freedom can be eliminated, reducing the search to 3dof.
Since a virtual range image is used to evaluate each pose
hypothesis, we can also eliminate the search in the camera
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Fig. 3. Example correlation surface for coarse registration.

z axis. For any translation parallel to the camera x − y
plane, the average or median z deviation can be computed
and removed. This reduces the 6D search to 2D, making
correlation feasible.

The correlation proceeds as follows. The camera loca-
tion and orientation are estimated using onboard sensors,
and the orientation is fixed. A grid is established in the
camera sensor plane as a set of translations ∆xc and
∆yc. The camera z coordinate of each translation is zero.
The approximate camera orientation is then used to rotate
these translations to world coordinates (∆x, ∆y, ∆z).
For each translation hypothesis, the differences between
corresponding pixels in the two rendered range images is
computed. The median of these differences is found and
subtracted out, and then the sum of absolute differences
between the corrected range values is computed as a
match score. The match score for each translation in the
correlation grid is then interpreted as a correlation surface.
The minimum value is chosen as the coarse match. An
example correlation surface is shown in Figure 3.

A grid size and grid spacing must be determined over
which the correlation is to be computed. Our current
implementation uses an 11×11 grid with a 10 cm spacing,
which can compensate for translation errors of up to half
a meter and find an initial coarse alignment that is within
5 centimeters of the solution.

C. Fine registration

The goal of our registration procedure is to minimize
(6). LM requires the gradient and approximate Hessian

∇pJ2 = −HTR−1(z− h(p))

∇2

pJ2 ≈ HT R−1H (7)

to compute a parameter update

p← p + (∇2

pJ2 + λI)−1∇pJ2 (8)

The parameter λ ensures that (8) is well conditioned and
takes an appropriate step. A more complete description
of the LM algorithm is beyond the scope of this paper.
Several useful descriptions exist[12], [9]. However, the
Jacobian of the sensor model is specific to the application
described here.
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Fig. 4. The Jacobian of the depth measurement is found by projecting
the derivative of the vertex locations onto the surface normal.

The Jacobian H is the change in the rendered depth at
each point with respect to a change in the transformation
parameter p. Motion of the point si on a polygon can be
decomposed into motion normal to the plane and motion
parallel to the plane. Motion parallel to the plane does not
change the depth. The depth only changes with motion
normal to the plane.

The change of the point si is described by ∂si/∂p,
which is a linear combination of the derivatives ∂v/∂p

with the same coefficients used during rendering in (4).
The projection of the derivative onto the surface normal
is

∂si

∂p⊥
= n̂c · (ai

∂vi

∂p
+ aj

∂vj

∂p
+ ak

∂vk

∂p
) (9)

The change in depth hi lies along the camera normal. Its
projection onto the surface normal is

∂hi

∂p⊥
= n̂c · n̂s

∂hi

∂p
(10)

Equating the projections (9) and (10) we find

∂hi

∂p
=

n̂c

n̂c · n̂s

· (ai

∂vi

∂p
+ aj

∂vj

∂p
+ ak

∂vk

∂p
) (11)

The Jacobian H is the matrix containing all of the gradi-
ents ∂hi/∂p.

D. Robust Estimation

The L2 norm is optimal when the observation noise is
Gaussian. However, the L2 norm may exhibit problems
when it is not. For data which contains outliers, there
are a family of norms ρ() which are robust to large
deviations. These are functions which have a bounded
derivative far from zero, so that large deviations provide
only a small contribution to the gradient of the objective
function. The objective function used in this work uses
the Huber norm[11],

ρ(x) =

{

c2(1− cos(x/c)) if |x|/c < π/2
c|x|+ c2(1− π/2) if |x|/c ≥ π/2

(12)

shown in Figure 5. When the deviation is close to zero,
the Huber norm behaves similarly to the L2 norm. When
the deviation is large, the norm behaves similarly to L1.
This norm has been shown to perform well for ICP[8].
Using the robust norm, we rewrite (6) as

JH(p) =
1

2

∑

i

ρ(zi − hi(p)) (13)
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Fig. 5. Comparison of the L2 norm and the Huber robust norm used
in this work, and the weight function for weighted least squares.

and the derivatives as

∇pJH = HT ΩR−1(z− h(p))

∇2

pJH = HT ΩR−1H (14)

where Ω is a diagonal matrix of weights

ωii = w(zi − hi(p)) (15)

The weight function for the Huber norm is

w(x) =

{

c/x sin(x/c) if |x|/c < π/2
c/|x| if |x|/c ≥ π/2

(16)

with c = 1.2107. The weights are recomputed during
each iteration of Levenberg-Marquardt, resulting in an
iteratively reweighted least squares algorithm.

IV. EXPERIMENTAL RESULTS

To empirically validate the performance of the regis-
tration for instrument placement, we tested our algorithm
with a 4 meter traverse in the laboratory. A stereo image
pair was captured using the navigation cameras on the
mast of the K9 rover. A 3D model was computed and
presented to an operator in the Viz visualization tool.
The user specified a goal point on a rock. The selected
instrument placement goal location is marked with a “+”
in the left camera image shown in Figure 8. The rover
moved 4 meters, stopping every meter to align the 3D
model of the current view of the goal location with the
3D model created from the initial view. At a distance of
2 meters, the view switched from the navigation cameras
on the mast to the hazard cameras on the underside of
the rover chassis in order to provide a better view of the
goal. This was accomplished using our target handoff by
aligning views from the two different camera pairs.

Figure 6 shows two 3D models. The red model is the
initial 3D model computed using stereo vision from a
distance of 4 meters. The arrow indicates the goal location
selected by the rover operator. The textured model is
the final view of the rock from the hazard cameras at
a distance of 50cm. The misregistration is a result of
errors in by dead reckoning, rover kinematics, pan tilt unit
calibration, etc. Figure 7 shows the result of aligning the
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Fig. 8. Selected goal location

Fig. 9. Estimated goal location after registration

initial model from the navigation cameras with the final
model from the hazard cameras.

The goal location on the rock can be recovered directly
using the transformation which aligns the views, which is
represented with an arrow in Figure 7. The final camera
view of the goal is in Figure 9, with the estimated goal
location indicated with a “+”. This is the intended location
for the instrument, which is placed using the algorithms
described in[1].

V. DISCUSSION

Registration of 3D surface models is an attractive
method for localization and target approach. As long as
the lighting conditions permit the acquisition of images
for stereo, the surface models and resulting registration
results are independent of the lighting conditions. This

is attractive compared to 2D approaches which might
have difficulty with tracking features or recognizing places
when lighting conditions change. We can also achieve
bounded error in pose estimation with respect to the target
location since the initial target model can be used as long
as the target remains in view.

Furthermore, 2D visual tracking requires the rover to
spend computational effort on computations that it may
be doing only for the purpose of visual pose estimation.
However, NASA’s current plans call for stereo vision
to be used for hazard avoidance on MER in 2003 and
probably on MSL in 2009. Registering the 3D models that
are already created for local path planning and obstacle
avoidance makes dual use of data that is being generated
anyway. The marginal computation for registration is less
than the computation required for building the 3D models
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Fig. 6. Terrain models before registration.

Fig. 7. Terrain models after registration.

in the first place, so most of the computational work is
already done.

The robust estimation method used in this paper works
quite well. The surface models used in the examples
here were not regularized, resampled, or “cleaned” in any
way and the results are still promising. Other reported
approaches require mesh regularization and cleaning in
order to ensure that meshes have similar resolutions and
there are no outliers before minimizing a norm which is
sensitive to large deviations. These steps may improve
the results we can acheive using robust estimation but
empirically are not required for it to work.

Algorithmically, our technique compares well to ICP.
The rendering operation takes O(n) where n is the number
of pixels in the virtual range image. The resolution of
the virtual range image can be changed to speed up
the algorithm with a corresponding loss in performance
due to lack of detail in the models. Levenberg-Marquardt
updates require O(n) to construct and multiply matrices,
but the computation of the update to the parameter is
constant time since the number of dimensions in the
parameter vector is fixed at 6. In terms of convergence, the
approaches have similar properties since each converges
to a local minimum and will find the global optimum if
the initial guess is within the basin of attraction. We have
not yet done experiments to determine what that basin
might look like for the different methods, but we have
empirically noticed that the basin of attraction is larger for
the robust norm than for least squares. We are working on
a more thorough empirical comparison of our technique
to ICP, and in the mean time we have also made our
3D terrain data public for interested readers to use for

comparison with other techniques[13].
We are currently working to further extend this work.

Algorithmically we are investigating ways to optimize
the implementation, perhaps making use of some efficient
rendering techniques. We would also like to extend this to
multiview registration in order to handle more than two
views at a time.

This method is being incorporated into a larger demon-
stration of single cycle instrument placement for improved
efficiency of planetary rovers and increased science return
for future Mars missions.
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